

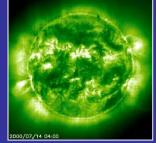

# The KuaFu mission Space Weather Explorer

A L1 + polar triple star project

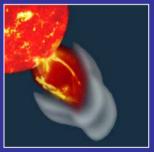


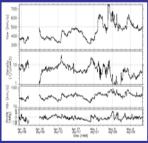


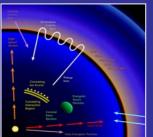
## KuaFu mission goals Space weather Science


To observe continually the complete chain of actions/ reactions from the solar atmosphere to geo-space:


- 1. Solar Source of disturbances: Flares, CMEs, energetic particles
- Propagation of disturbances:
   Interplanetary clouds, radio waves, shock waves, solar energetic particles
- 3. Geo-effectiveness: aurora activities, sub-storms, magnetic storms,





### KuaFu mission goals New Science Objectives


- 1. First continuous imaging of the source region of solar eruptive events by vacuum ultraviolet lines.
- 2. Observing the line of sight velocity of CME expansion by spectral measurements of Lyman-alpha line from CME
- 3. First non-interactive observations of the global response of the geo-space to solar disturbances











### Payload on KuaFu-A



Survey the Sun for coronal structure and activity evolution: imminent and ongoing prominence eruptions, optical flares and post CME effects

#### Coronal Dynamics Imager (CDI):

A white light coronagraph to survey the extended corona from about 2 to 15 R<sub>s</sub> from disk center

#### Radio Burst Instrument (RBI):

Observe radio Type III bursts caused by accelerated electrons on their way from a flare/CME site out into space

#### Solar Wind Instrument Package (SWIP):

Observe *in-situ* the solar wind variability: stream structures, corotating interaction regions, Alfvénic fluctuations, shock waves, magnetic clouds, etc

#### Solar Energetic Particle Sensor (SEPS):

Measure the fluxes of energetic particles accelerated at flare sites and at shock fronts





### Summary on KuaFu-A

| Instrument                                | Mass             | Power           | Telemetry           | Advisor                             |
|-------------------------------------------|------------------|-----------------|---------------------|-------------------------------------|
| EUV/FUV Disk Imager (EDI)                 | 25 kg            | 20 W            | 100 kbps            | P. Rochus et al.                    |
| Coronal Dynamics<br>Imager (CDI)          | 31 kg            | 35 W            | 50 kbps             | P. Lamy et al.                      |
| Radio Burst Instrument (RBI)              | 10 kg            | 5 W             | 5 kbps              | JL. Bougeret                        |
| Solar Wind Instrument Package (SWIP)      | 5 kg             | 5 W             | 3 kbps              | R. Schwenn<br>and KH.<br>Glassmeier |
| Solar Energetic<br>Particle Sensor (SEPS) | TBD              | TBD             | TBD                 | R. Wimmer-<br>Schweingruber         |
| Total                                     | 71 kg<br>(+SEPS) | 65 W<br>(+SEPS) | 158 kbps<br>(+SEPS) |                                     |



## Team members for KuaFu assessment study and pre-study

C.-Y. Tu (project leader)

F-S. Wei

Z. Xiao, Wang J.-S.

Y.-W. Zhang, S.-G., Yuan

L.-D. Xia

R. Schwenn, E. Marsch, U. Schühle

Pierre Rochus

Philippe Lamy

Jean-Louis Bougeret

Eric Donovan

Karl-Heinz Glassmeier

Robert Wimmer-Schweingruber

**Tielong Zhang** 

**Peking University** 

Chinese Academy of Science, Beijing, China

**Peking University** 

CAST (China Academy of Space Technology),

DFH Satellite Co. LTD, China

University of Science and Technology of Hefei,

China

**MPS Germany** 

CSL, Parc Scientifique, Belgium

Laboratoire d'Astronomie Spatiale CNRS, France

Observatoire de Paris, Meudon, France

University of Calgary, Canada

TU Braunschweig, Germany

Universität Kiel, Germany

Space Research Institute, Austrian Academy of

Sciences,